Group Actions on Partitions
نویسندگان
چکیده
منابع مشابه
Group Actions on Partitions
We introduce group actions on the integer partitions and their variances. Using generating functions and Burnside’s lemma, we study arithmetic properties of the counting functions arising from group actions. In particular, we find a modulo 4 congruence involving the number of ordinary partitions and the number of partitions into distinct parts.
متن کاملA note on group actions and invariant partitions
Let a group G act on a set V . Then a G-invariant partition of V is the orbit-set of some subgroup in G if and only if it is the orbit-set of some normal subgroup in G. This simple fact is recalled and an application to group actions (G,V ), where every G-invariant partition of V is the orbit-set of some subgroup of G, is presented. Math. Subj. Class. (2000): 05C25, 20B25, 20E15.
متن کاملActions and Identities on Set Partitions
A labeled set partition is a partition of a set of integers whose arcs are labeled by nonzero elements of an abelian group A. Inspired by the action of the linear characters of the unitriangular group on its supercharacters, we define a group action of An on the set of A-labeled partitions of an (n + 1)-set. By investigating the orbit decomposition of various families of set partitions under th...
متن کاملGroup Actions on Posets
In this paper we study quotients of posets by group actions. In order to define the quotient correctly we enlarge the considered class of categories from posets to loopfree categories: categories without nontrivial automorphisms and inverses. We view group actions as certain functors and define the quotients as colimits of these functors. The advantage of this definition over studying the quoti...
متن کاملGroup Actions on Trees
For this paper, we will define a (non-oriented) graph Γ to be a pair Γ = (V,E), where V = vert(Γ) is a set of vertices, and E = edge(Γ) ⊆ V × V/S2 is a set of unordered pairs, known as edges between them. Two vertices, v, v′ ∈ V are considered adjacent if (v, v′) ∈ E, if there is an edge between them. An oriented graph has edge set E = edge(Γ) ⊆ V × V , ordered pairs. For an edge v = (v1, v2) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2017
ISSN: 1077-8926
DOI: 10.37236/6673