Group Actions on Partitions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Actions on Partitions

We introduce group actions on the integer partitions and their variances. Using generating functions and Burnside’s lemma, we study arithmetic properties of the counting functions arising from group actions. In particular, we find a modulo 4 congruence involving the number of ordinary partitions and the number of partitions into distinct parts.

متن کامل

A note on group actions and invariant partitions

Let a group G act on a set V . Then a G-invariant partition of V is the orbit-set of some subgroup in G if and only if it is the orbit-set of some normal subgroup in G. This simple fact is recalled and an application to group actions (G,V ), where every G-invariant partition of V is the orbit-set of some subgroup of G, is presented. Math. Subj. Class. (2000): 05C25, 20B25, 20E15.

متن کامل

Actions and Identities on Set Partitions

A labeled set partition is a partition of a set of integers whose arcs are labeled by nonzero elements of an abelian group A. Inspired by the action of the linear characters of the unitriangular group on its supercharacters, we define a group action of An on the set of A-labeled partitions of an (n + 1)-set. By investigating the orbit decomposition of various families of set partitions under th...

متن کامل

Group Actions on Posets

In this paper we study quotients of posets by group actions. In order to define the quotient correctly we enlarge the considered class of categories from posets to loopfree categories: categories without nontrivial automorphisms and inverses. We view group actions as certain functors and define the quotients as colimits of these functors. The advantage of this definition over studying the quoti...

متن کامل

Group Actions on Trees

For this paper, we will define a (non-oriented) graph Γ to be a pair Γ = (V,E), where V = vert(Γ) is a set of vertices, and E = edge(Γ) ⊆ V × V/S2 is a set of unordered pairs, known as edges between them. Two vertices, v, v′ ∈ V are considered adjacent if (v, v′) ∈ E, if there is an edge between them. An oriented graph has edge set E = edge(Γ) ⊆ V × V , ordered pairs. For an edge v = (v1, v2) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2017

ISSN: 1077-8926

DOI: 10.37236/6673